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Abstract
A cranking harmonic oscillator model, widely used for the physics of fast
rotating nuclei and Bose–Einstein condensates, is re-investigated in the context
of PT -symmetry. The instability points of the model are identified as
exceptional points. It is argued that—even though the Hamiltonian appears
Hermitian at first glance—it actually is not Hermitian within the region of
instability.

PACS numbers: 03.65.Vf, 03.75.Kk, 02.40.Xx

Quantum instabilities are attracting considerable attention in a variety of physical situations.
They can be associated with the formation of solitons and vortices in Bose–Einstein
condensates [1], with a sudden change of the moment of inertia of a rotating nucleus (see, for
example, [2] and references therein) and a transition from one- to two-dimensional nuclear
rotation [3]. A particular example of interest is the Hamiltonian
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used in condensed matter physics to describe in a simple way the interaction between an atom
and a radiative field [4]. Note that the bi-linear form of (1) corresponds to a linearized version
of some more general interactions. As discussed below this may bring about an instability.
Higher order terms may or may not remove such instability.

Using the standard relations (h̄ = m = 1)
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where x1 = x, x2 = y, and choosing special values for the strength constants

g1 = �(ω1 + ω2)/2
√

ω1ω2 g2 = �(ω2 − ω1)/2
√

ω1ω2 (4)

one recognizes the well-known cranking Hamiltonian (Routhian)
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which has been applied in nuclear physics [5, 6] and for rotating Bose–Einstein condensates
(cf [7]). The Hamiltonian (5) appears as the sum of Hermitian operators and is expected—
naively at first glance—to be itself a Hermitian operator. The same holds when (5) is written in
a second quantized form (1). In the following we explore the formal character of the instability
points of H and Ĥ . We argue that the operators are no longer Hermitian at these points, in
fact, we show, that these points are exceptional points (EP) [8, 9].

Non-Hermitian Hamilton operators have attracted widely spread interest during the recent
years (see [10]), be it in the context of effective theories [11], or in the context of finding a
Hermitian equivalent [12] or in the context of PT -symmetry [13] (PT is the product of the
parity and time reversal operator). One specific aspect of non-Hermitian operators is the EPs,
being singularities of spectrum and eigenfunctions. As such, they are usually of particular
physical significance. They have been discussed in a great variety of physical applications:
in optics [14], in mechanics [15], as coalescing resonances [16, 17], in atomic physics [18],
and in more theoretical context in PT -symmetric models [19] or in considering their mutual
influence [20], to name just a few. In its simplest case they give rise to level repulsion being
the more pronounced the nearer they lie to the real axis. Depending on the particular situation
they can signal a phase transition [21]. In the present case the EP is associated with the onset
of an instability. Note that the Hamiltonian (5) is symmetric under PT -operation using an
appropriate choice of parameters (� → −� under T ) [22].

It is well known that a Bogoliubov transformation of the Hamiltonian (5)
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yields the form (cf [6])
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with the eigenmode energies
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It is also known [6, 22] that ω2
− becomes negative when the rotational speed � lies between

min(ωx, ωy) and max(ωx, ωy). In the following we assume that ωx > ωy . At the points where
the two eigenmodes vanish, that is when ω−,1 = +ω− and ω−,2 = −ω− coalesce, the matrix B
in (6) becomes singular. This happens at the critical points �c1 = ωy or �c2 = ωx signalling
an instability.

The coalescence is reminiscent of the behaviour of an EP. To confirm that we are in fact
encountering a genuine EP and not a usual degeneracy, we have to analyse the eigenfunctions
of the respective Hamiltonians. Of course, this is closely related to the singular behaviour of
the Bogoliubov transformation B.
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To illuminate both, the underlying physics and the mathematical structure, it is convenient
to construct the matrix U connecting the original canonical coordinates �p and �r with the quasi-
boson operators qk and q

†
k , that is
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As a first step we aim at the generalized classical normal mode coordinates �p = (P+, P−)

and �X = (X+, X−) in which H assumes the form (also given in [22])
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This is achieved by solving the classical equations of motion
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which can be written in a matrix form
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Note that (5) can be written as

H = ( �p �r)H( �p
�r
)

. (16)

The solution of (13) is obtained by exponentiation and reads( �p(t)

�r(t)
)

= U exp(Dt)V
( �p(0)

�r(0)

)
, (17)

where D = diag(−iω+,−iω−, iω−, iω+) is the diagonal form of M = UDV containing
the eigenmodes. The columns of U and V are the right-hand and left-hand eigenvectors,
respectively, of M. Note that the eigenmodes are obtained from the non-symmetric matrix
M; from this classical view point it is therefore no surprise that some of the eigenvalues
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occurring in (7) may be complex. As the column vectors of U and V form a bi-orthogonal
system, we can choose V = U−1. Also, we observe from the special form of (14) that

V =




0 0 0 −i
0 0 −i 0
0 +i 0 0
+i 0 0 0


UT




0 0 +1 0
0 0 0 +1

−1 0 0 0
0 −1 0 0


 . (18)

While the explicit form of �p(t) and �X(t) is of little interest, the essential point here is the
classical instability occurring for negative values of ω2

−, that is for ωy � � � ωx . In fact, the
harmonic oscillator potential has the ‘wrong’ sign in (10) for the coordinates P−(t) and X−(t).
From (17), we read off the classical ‘run away’ solution in this parameter range yielding the
∼ exp(|ω−|t) behaviour for position and momentum. The corresponding quantum-mechanical
behaviour is discussed below.

Using the form (16) we aim at a form corresponding to (7), namely,
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with
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From (9) this implies that U must be normalized such that H = UT HQMU . The explicit
form of the matrix elements of U is given in [23]; however, the quoted paper focuses upon
significantly smaller values of � than the range of instability. The analytic form allows
pertinent statements in general, and in particular an expansion in � around the critical points
�c1 = ωy and �c2 = ωx .

The essential results are as follows.

(i) When � /∈ [ωy, ωx] the commutators
[
qj , q

†
k

] = δj,k follow from [rm, pn] = iδm,n.
It guarantees that the boson operators are creation and annihilation operators for the
excitations, in the present case, with energies ω− and ω+. However, this holds only when
ω2

− is positive; if ω2
− is negative (� ∈ [ωy, ωx]) the commutator

[
q−, q

†
−
]

is negative with

the implication that the operators q− and q
†
− are no longer proper boson operators. We

further note that V—as given by (18)—no longer is the inverse of U for this parameter
range.

(ii) The end points of the instability region, i.e. the points �c1 = ωy and �c2 = ωx can
be clearly identified as EPs. In fact, while the two eigenvectors associated with the
two distinct eigenvalues +ω− and −ω− are obviously linearly independent, they become
aligned, i.e. linearly dependent, at �c1 and �c2 where ω− vanishes; this is the clear
signature of an EP [24]. We recall: a genuine degeneracy would have two linearly
independent eigenvectors. EPs are a universal phenomenon occurring in spectra and
eigenfunctions under variation of parameters. For Hermitian operators they can occur
only when such parameters are continued into the complex plane thus rendering the
original Hermitian operator effectively non-Hermitian.



Instabilities, nonhermiticity and exceptional points in the cranking model 9479

2 2.5 3 3.5

-0.75

-0.5

-0.25

0.25

0.5

0.75

Figure 1. Relevant spectrum ±ω− as a function of � in arbitrary units. Parameters chosen are
ωx = 3 and ωy = 2. The dashed lines indicate the imaginary part.

EPs are square root singularities of the spectrum: in the present case the spectrum
has a branch cut in � ranging from ωy to ωx . When the eigenvalues +ω− and −ω− are
continued beyond the EP, they become imaginary for � ∈ [ωy, ωx] as was also noted in
[22], again with opposite sign (see figure 1); clearly this contradicts H being Hermitian
for this parameter range.

(iii) The correct normalization enforced by (9) (to guarantee the correct commutation relations
when � /∈ [ωy, ωx]) has the consequence that the leading terms of the components of the
critical eigenvectors behave as (� − �c)

−1/4 when approaching the critical point. This
particular singular behaviour—the forth root and the infinity—is again a consequence
of the eigenfunctions at an EP [25]. In fact, it has been shown in general [26] that the
scalar product of the two eigenfunctions—associated with the two coalescing levels—
must vanish as a square root, in the present case as (�−�c)

1/2. As a consequence, when
normalization is enforced by dividing by the square root of the scalar product, the singular
behaviour follows as indicated. Moreover, the forth root has the consequence that—for
the wavefunction—a clockwise encircling of the EP in the �-plane yields a result that has
a phase that is different from that of a counterclockwise encirclement. In fact, considering
4
√

z (taking z = � − �c), one obtains +i when z has described a full counterclockwise
circle around zero and −i when going in the opposite direction. This particular Riemann
sheet structure has been experimentally established in microwave cavities [27]. It would
be a challenge to confirm it in the present context with a BEC or with Raman scattering
using an incident laser beam upon vibrational modes of a medium.

So far, we have established the seemingly surprising result that the Hamilton operator
(5)—or its second quantized counterpart—fails to be Hermitian when ωy � � � ωx . The
endpoints of this interval are EPs. We stress that this result is based on an analytic continuation
obtained from the range � < ωy , or equally, from the range � > ωx . These two (Hermitian)
ranges are of course also analytically connected.

It appears apposite to contrast our findings with common wisdom about the solutions of
the Schrödinger equation of (10). In fact, if (10) is considered in isolation, the Hamiltonian
appears perfectly Hermitian, also for ω2

− < 0. It has a continuous spectrum associated with
the unbounded classical motion in the coordinates P− and X−. The quantum-mechanical
wavefunction is asymptotically of the form exp(i|ω−|X2

−/2) apart from a hypergeometric
function. The crucial aspect explaining this apparent discrepancy lies in the transformation
that brings us from (5) to (10). As long as � /∈ [ωy, ωx] the two operators are equivalent up
to a similarity transformation. For � ∈ [ωy, ωx] they are not. And the transformation breaks
down exactly at the EPs, the singularity that signals the instability point.
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This is a beautiful demonstration of a PT -symmetric operator [13], yet with a special
twist: (5) appears Hermitian to the naked eye, but its spectrum is not real when � ∈ [ωy, ωx].
While the operator is PT -symmetric, the symmetry is broken by the state vector. Thus, in this
parameter range the Hermitian form (10) is not its Hermitian equivalent.

In conclusion, we mention that the two exceptional points collapse into a diabolic point
[28] when ωy = ωx ; in this case � = ωx is a regular point with a genuine degeneracy for
ω− = 0.
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